OCTOGON MATHEMATICAL MAGAZINE

Vol. 29, No.2, October 2021, pp 875-898

Print: ISSN 1222-5657, Online: ISSN 2248-1893 819
http://www.uni-miskolc.hu/~matsefi/Octogon/

Everything about cubic function without
calculus

Arkady M. Alt 13

~ ABSTRACT. The purpose of this article is to show that all basic properties of
cubic function that usually obtained with calculus (limits, derivatives) can be also
obtained only by elementary algebra means.

MAIN RESULTS

1. Existence of a roots of reduced cubic polynomial. First we will
prove that reduced cubic polynomial of the third degree

P@)=z3+pr+gq

always have a root, i.e. solution of equation P (z) = 0.
By default everywhere further we assume that p #0.

Lemma 1. (Preserve sign lemma). If P (a) # 0 then there is real
¢ > 0 such that for any = € (a —€,a +¢€) holds

signP (z) = signP (a) .
Proof. Suppose that |z —a| < 1, then since

P(x)—P(a):(x—a)(m2+xa+a2+p):
=(z—a) ((m—a)2+3a(a:—a)+3a2+p) =

= (z—a) ((z — a)® + 3a(z — a) + 3a> +p)

we have

|P(z) — P(a)| < |z —al (1 +|p| +3al + 3a%).

| BReceived: 28.10.2021
2010 Mathematics Subject Classification. 26D15.
Key words and phrases. Inequalities.




876 Arkady M. Alt

Using this inequality and taking

|2 (a)] }

€=minq 1,
m{ 2(1+ [p| + 3 [a] 1 3a2)
we obtain that
|P (a)]
2(1+ [p| + 3]a| + 3a2)

for any x € (a —€,a + ¢) and, therefore,

|z —a| <

|2 (a)] P (a)]

|P(z) — P(a)| < =R +Play< Plg) < 5 + P (a)
If P(a) > 0 then
P (z) > Péa) > 0;
If P(a) <0 then
P(@<%+P(a):})§“)<o.

Lemma 2. If for some a < b holds inequalities P (a) <0 and P (b) > 0 then
exist z, € (a,b) such that P (z,) = 0.

Proof. Let N':= {z | x € (a,b) and P (z) < 0} .Since A bounded set then
by Axiom of Completeness A" have supremum- supN .Let x, :=supN. It is
mean that

1. For any x € N holds z < z,;
2. For any € > 0 there is € M such that z, — ¢ < .

First we will prove that P (z,) > 0. Suppose opposite, i.e. P (z,) < 0.Then
by Lemma 1 we can find some small enough positive real number A such that
P (x4 + h) < 0. This mean that z, + h €¢ A" and, therefore, z, isn’t upper
bound for N, i.e. we get contradiction.

But if we suppose that P (z,) > 0 then again by Lemma 1 there is real

€ > 0 such that for any z € (2, — ¢, 2, + €) holds P (z) > 0 and, in
particular, P (z) > 0 for any z € (z, — ¢, x,]. This is the contradiction with
property 2. for z,.
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us, remains only P (z,) = 0.

Lemma 3. Cubic equation P (z) = 0 always have at least one real root.

Proof. Let a := —+/|p| + |q| + 1 then a < —1 and

P(a)=a(a®+p) +q=

=a(lpl+p+lgl+1)+g<—(pl+p+lqg +1)+¢=

=—(Ipl+p) - (lgdl —q) -1 < -1 <0.
Let b= +/|p| + |q| + 1 then b > 1 and

P(b)=b(*+p)+q=

=b(lpl+p+ladl+1)+q¢>(Ip|+p)+ (lg +¢) +1>1>0.

Hence, by Lemma 2 we have a root in (a, b).

2. Translation. Let F' (z) = 2® — az? + bz — ¢ is monic polynomial of 3-rd
degree and let x = u + h,then

F (u+ h) = v + 3u?h + 3uh? + h® — au? — 2auh — aa® + bu+

+bh —c =’ + u® (3h — a) +u (3h — 2ah + b) + F (h).
Denoting F' (z) := 3z% — 2az + b and F” () := 6z — 2a we obtain

(1)

il ) ”2(") u? + F' (h)u+F (h).

F(u+h)=u®+

Using translation we always can reduce F (z) to the cubic polynomial
without second degree term. Namely, from claim

F'"(h)=0 <= 3h—a=0

follows desirable translation x = u + g. Thus and we obtain
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and, therefore,

(2)
g 3
F<u+§> =u” 4+ pu+q,
2 b 2 3
where p = b — a—, q= % — 2—(; — ¢ (Translation Formulas).

Using form (2) and Lemma 3 we immediately can conclude that any
polynomial 3-d degree have a real root.

3.Wieta’s conditions. Let z; is the root of F () then

F(.’I}):F(.’L')—F(l'l):(.’E—.’El)($2—$(a—$1)+$%+ax1+b).

In supposition that quotient (quadratic trinomial)

Qe)=2-z(a—z1)+2?+ax; +b

have roots zs and x3 then

Q(z) = (z —z2) (z — z3).

Hence,
F(z)= (:c—a:l)(x—xg)(m—:cg) =
=g3 — (231 + x2 + x3) z? + (1131£E2 + xox3 + :c3:c1) T — T1T2x3 <
Ty t+22+2T3=a
(3). T1T2 + 2223 +x301 =0 .

T1x9x3 = C
From the other hand if z1, x5, 23 satisfies to (3) then

F(z)=2%- (1 + 22 + x3) z2 + (122 + 2223 + T371) T — T ToT3 =

= (x—xl) (ZL‘—I‘Q) (.’L‘—$3)

and, therefore, x1, 29, z3 are the roots of F (23
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F(z) =23 — 2122 — Tox? — 1322 + T1T2T + ToT3T + T3X 1T — T1ToT3 =

=1? (z — ;) — 2oz (z — 17) —z3(T —21) + 2223 (T — 21) =
= (¢ — z1) (2? — Z2T — T + Tox3) = (z —z1) (z — 2) (x — z3) .
Thus we obtain Vieta’s Theorem for cubic equation.

Theorem. Cubic equation z3 — az? + bz — ¢ = 0 have three real solution
1,22, 23 iff these numbers satisfy (3).

4. Further transformations and solution of cubic equation.
Substitution u = kz, where k > 0 in u3+ pu + g = 0 gives us

3.3 A k> 3 p i
k22 +pkz+qg=0 <= 23+ L4 2 _p
|p| lpl~  Iplk
and we claim
85 e
lp| 3
k=22
3
For such k we get equation
4
37 Inl 21p| /Ipl
3¢V3

(4). 42% + 3sign (p) z = d, where d := ——23V°
2 [p[ v/Ip|

Thus, we obtain that by appropriate linear transformation any cubic
equation can be equivalently reduced to one of the two special cases- to
42 — 3z =d if p <0 orto 4t + 3t = d if p > 0. Consider now the following

cases:

1. 423 + 32 = d. Since 423 + 3z = d have a solution and function
z+> 423 4 32 increasing on R
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then this solution is unique. We will find it, using substitution

1 ; 1
Z=—-1t—~
2 t)’

which provide equivalency of following transformation.

1/5 1 1 B ALY I et I
s(#-a-s(c t>)+§(t—t>_d<:>2<t g)=d =

P I SN e s [t:%/d— @211
¢

t —2dt> —1 =
. oy [t3:d+\/d2+1

and, finally gives us

(5).
Vd+ V&2 +1- YV + —d

2 ]

2. 423 -3z =d and |d| < 1.
Since |d| < 1 then for any » which satisfy to equation
42 —3z =d holds |z| <1 (indeed, suppose that |z| > 1 then

1> |d] = [42° - 3z| > ‘4z3| — 32| =4|2)* = 32| =

= 2| (4|z|2 = 3) > 2] (4—3) = 2| > 1,

L.e. we get contradiction) and that gives us opportunity to apply substitution
z=cosgp, ¢ € [0,7]. Denoting « := cos™! (d) we obtain

422 —32=d < 4cos3go—3cosg0:cosa < cos3p =cosa <

3p =ta+ 2k i dle a a+2r 2r—a
0<ep<m (i i1 > w8 ]
Thus we obtain
(6).
« a4+ 27 2T — «
21 = COS —, 29 = COS , 23 = COS y
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In the case |d| < 1 roots 21, 29, 23 are three different, because

O<a<z 2r a+27 E<27r—a<27r
3 3"3 3 3 3 3
Ifd=1 then

428 —32=1 ¢ 4% -32-1=0 <= (22+1)%(z-1)=0

1
and, therefore, equation have one root z = = multiplicity 2 and one simple
root z = 1.
From the other hand, since o = 0 then
2w 1
21 =cos0=1,29 = z3 = cos? = —5;

Ifd=—1 then
42 —32=-1 <= 45— 32+1=0 < (22 -1)%(z+1)=0

1
and, therefore, equation have one root z = 3 multiplicity 2 and one simple

root z = —1.
From the other hand, since oo = 0 then

T 1
z1 =cosm = —1,29 = 23 =cos§ = 3

So, if |d| < 1 then equation 423 — 3z = d have three real solution in the form

a+ 27 2T —
, 23 = COS :
3
3.42% — 3z =d and |d| > 1. Since |d| > 1 then for any z which satisfy to
equation 423 — 3z = d holds |z| > 1.
(Indeed, supposing the contrary |z| < 1 we may use substitution
z = cos ¢ and immediately obtain

«
Z1 = cos g,zg = cos

1 <ldl= |4z3 — 32| =|4cos®p — 3cos | = [cos3p| < 1,
that is contradiction) and tis give us opportunity to use substitution
1 1 1
i (t + —) (because range of t + 7 is set (—o0,2] U [2,00)).

t
Using this substitution we obtain equation

1 1y 3 1 ¥ iff SO0
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024 +1=0 s | =4-VE-1 — |t=Vi-Vi g
B=d+Vd2 -1 t=vVd+vV& -1

and, finally gives us

(7).

L _VA+VPH1+ i VP 11
= 5 .
We will prove that equation 423 — 3z = d have no other real solutions.

Denote obtained solution via zy and supposing that there is another solution
z distinct from 2y we obtain

423 — 3z = 428 — 32) >

42} + 42120+ 422 -3 =0 «— (221+zo)2+3(z§—1) =0 = £ <

that is contradiction to |zg| > 1.
5. Criteria of the three real roots of cubic equation.

Lemma 4. Let k and [ are real numbers, then system of equation

(8).
z+y+2z=0
Yy +yz+zz=—k
Tyz =1

have real solution iff 4k3 > 2772

Proof. First consider case when [ = 0.Then obvious that system solvable iff
k> 0.

Thus, we can assume that [ > 0, because solvability of the system (8) take
place for [ and [ := —] simultaneously.

1. Necessity. Suppose, that (x,y,2) is real solution of (8) (or, due to Vieta’s
Theorem, z,y, 2 are real solution of cubic equation u3 — ky — [ = 0). Since
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T+y+2z=0and z,y,2 # 0 then one of this three number is positive. Let it
be z.

Then z+y= —2 and
l
myz—k-l-zQ:; = B_kz-1=0.
Since 0 < (z — y)? = (z 4+ y)® — 4zy we obtain

0< (=2)® —4(~k+2%) < 32 <4k
and
2 4 3
0< (—2) e 4] < 2°.
Thus for z we have equality 23 — kz — I = 0 and and two inequalities: ‘

23> 4] and 322 < 4k,where from latter inequality follows k£ > 0.
Since 23 > 4] «—= 26 > 1612 and 322 < 4k <« 64k3 > 2725 then

3
16l2§z6§%k— — \3/4—152:52\/5
27 3
which yield inequality
Val < 2\@ = 271% < 4k3.
2. Sufficiency. Let f (u):=u® —ku—1 and for coefficients k and [
holds inequality 4k3 > 27(2.
We have
f(\%l—z) =4l -k V4 -] =

=3l —kVA <0 < 27 < k% = 2712 < 4K° ‘

f(z@zg'g\/g-%@*

zgk\/g—zzo — 43> 72,

From f (\3/47) f <2\/§> < 0 follows that exist z € [\3/4_1,2\/5} , such

that f (2) =0.
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But

mgz(:)4l§z3

zS2\/§ = 4k—-322>0

imply that exist real numbers z and y which simultaneously satisfy

rT+y=-—=z .
EEd

and

Ty = — Ty = —k + 22
because
3 9 1
22—kz—1=0 < —k+2z =

Hence exist three real numbers z,y and z, for which
r+y+z2=0,2y+yz+2x=—k and zyz = l,or by the other words, cubic
equation u® — ku — [ = 0 have three real solution x,y and z.

Corollary. Cubic equation u3+ pu + ¢ = 0 have three real solution iff

(9)-
27q2 + 4p3 <0.

Proof. Applying Lemma 4 to reduced cubic equation
w4 put+qg=0
(k := —p,q := —1) we obtain
27(—¢q)? <4(-p)® <= 27> + 4% <0.
Theorem. Cubic equation 23 — az? + bz — ¢ = 0 have three real solution
T t+T2+x3=a
(or correspondent Viet System { z;z5 + Tox3 4+ x3x1 = b | solvable in real

T1xx3 = C
numbers) iff

(10).
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9ab — 243\ 2
cC— — <
27 .

4 (a2 - 3p)*
% <= b%a? — 43 + 18abc — 4ca® — 272 > 0.
Proof. Tmmediately follows by substitution in (9) translation formulas
_ab  2d° S a?
s o7 caer=oi-—

£

Remark. Since inequality (10) implies a? > 3b then it can be equivalently
rewritten as

9ab—2a3—2(a2—3b) a? — 3b N
27 3

9ab — 2a° + —2 (a® — 3b) vaZ — 35
27

6. Maximization (minimization) of cubical polynomial-elementary
approach. Suppose that cubical polynomial

s

Fz)=23-az?+bz—c
represented in the form

F(x)=(z-p)’@—q)+r
for some p # ¢ and r.

1. If p > g then, for any z € [g, p], using AM-GM inequality we obtain

o (p—w)22(2:v—2Q) Sr+%(2(p—w)w;(2x—2q))3:

L4 -9)

il 27

where equality occurs iff

P+ 2q

21-2q=p-—z = =
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That is

p+2¢\  4(p—q)?®
3 )_H o

2. If p < g then for any z € [p,q] using AM-GM inequality we obtain

max F(x):F(

z€[q,p]

2 3
— 29 -2 1 /(2(zx— 29 —2

F(x)zr_(x p)” (29 w)Zr__ (z—p) +(2g—22)\" _
2 2 3
__Ye=p_ 4e-g)
27 27 ?

where equality occurs iff

p+2q

29—-2x=x—p <= = 5

That is

. p+2q 4(p—q)?
F p— — —_—
o Bl =k ( g ) Tt

Thus, important to find condition which provide such representation.

Lemma 5. Cubical polynomial
Fiz)=2*—az’+bz—c
can be represented in form

F(z)=(z-p)(z—q)+r
if and only if equation 322 — 2az + b = 0 have solution, i.e. a? > 3b.
Proof. Identity
(@=p)* (2 —q) +7 =222 (2p+q) +z (0 + 2pq) + r — p’q =
=23 —az’+ bz —c
yields
2p+qg=a g=a—2p

P+22g=>0 <— r=pq—c
Pg-r=c 3p?> —2pa+b=0
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where equation
(D).
3p% —2pa+b=0
solvable iff a2 — 3b > 0 but since in case a® = 3b we obtain
2 3
3

2 3 2, @ a\3  a
- b —e = 3 — Zr— (__) = R
'—ar*+br—c=zx ax+3:v e=(x 3 —1-27 c

ile.p=q= g then represented in form

F(z)=(z—p)?(z— q) + r possible iff a2 > 3b.

Since a? > 3b yields two different solution p1,p2 of equation (D) then we
obtain two representations

F)=(@-m)?@—q)+n

and

F(z) = (z - p2)* (x — g2) + 1o
Corollary. If p; < py then
max F(z) = F (p)
z€(q2,p2)

and min F(z) = F (py).
z€(p1,91)

2
Proof. Let p; < ps. Since ¢ = a — 2p and p; + py = ?a then

1+ D2 a
D1 <= 5 <Pz <= p S3<h = a=a-2p>p
and g2 = a — 2py < py.
2 +2 .
Moreover, Pt 21 =p2 < q1 and I% =DP1> Qe e g <p1 <p <q.
Thus,
max F'(z)=F (p;)
z€[q2,p2]
and

min F(z) = F (ps)
z€[p1,q1]
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are local max and local min respectively.
7. Monotonicity of cubical polynomial without calculus.

Theorem.
P(z)=2+az’+bz+c

strictly increasing on (—oo,c0) iff a? < 3b.

Proof.
1. Let a? < 3b. If a? = 3b then

and, obviously, increasing on (—o0, 00).
Consider now case a? < 3b.
Let 1 < 9. Then

P(wz)—P(:ﬁ)za:g—x?—a(xg—x%)+b(x2—x1):

=(x2—xl)(m%-%a:lmg—l—x%—a(xl—kxg)%—b) =

2
> (z2 — 1) <3<x1+m2> —2a-m+b> >0

2 2

because discriminant of 32% — 2px + b is negative and

w%+m1x2+x% N (xl +x2)2
3 - 2

<= 41‘% + 4x129 + 4x§ >3 (x% + 22129 + x%) = (21 — 1:2)2 >0
for any 1, zs.
2. Let P (x) strictly increasing on (—o0,00).
Since P () strictly increasing on (—oo, 00), then for any = € R and any

h > 0 holds

P(x+h)—P(z) >
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>0 < h(32°+ (3Bh+2a)z+ (K +ah+b)) >0 —

(11) 32®+ (3h+2a)z + (h* + ah +b) > 0.
Since inequality (11) holds for any real z then

D= (2a+3h)?-12(h +ah+b) <0 —

4 (a® —3b) —3h* <0

and, therefore, a® — 3b < 0.
Indeed, if we assume that a® — 3b > 0 then 4 (a? — 3b) — 3h? > 0 for

a®—3b
h > 24/ .
= 3

That is the contradiction because 4 (a2 — 3b) — 3h? < 0 holds for any h > 0.
Remains consider behavior of

Piz)=2z3+ar’+bz+c
if a® > 3b.
Lemma 6. Let F (z) = 23 + pz + ¢ then for any x; < x5 there is point
Ty € (z1,22) such that

F (z2) = F (z1)

= 3$(2) + p.
2 — I

Proof. Since

F (z2) — F (1)
Iro — I1

:m%+x1x2+w%+p
we have equation

3$(2)+P=$%+$1x2+x§+p <= 33:(2):

2 2
r{ t+T1T2 + 2
1 2
:.’E%+.'IJ1IE2+£U% — |;1;0‘:\/7__3——

If 1,29 > 0 then
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2 2
i+ 122 + T
””1<\/1 l32 F <z

and

\/:L‘% + 120 + x%
_1'0 = -_— sm
3

If 21,29 < 0 then

2 2 2 2
i+ rT129+ T ]+ 2129 +
$1<—\/%<$2¢>$%>%>$%
and

\/ z?+ z1790 + x%
:L'O = — _—
3
If z; < 0 < x5 then holds at least one from two inequalities

2 2
i+ 1290 + T

3
or
2 2
M_\/wd,
3
Indeed,
2 2 2 2
i+ 129 + 2 1 Ty + 1129 + 2
x%—#:—((Ez—fﬂl)(x1+2$2),$%—#z
3 3 3
1
:—5 (.’122—331) (2:1:1+332)
and
— 3
max{x1+2x2,—(2x1+:c2)}=$2 = |$1+x2|>0

2

2 2
i i i+ 1120+ T
and again z is equal to one of two values \/ %ﬁ?
_\/3”% + 2129 + 73
3 .

Theorem. (Mean Value (MV)Theorem for cubic without calculus).
Let P (z) =23 — ax? 4 bz — c then for any 21 < x5 there is point
zo € (z1,x2) such that
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P (x3) — P (z1)
Ty — I

= 3285 — Z2amg + b,
Proof. Let t := o — g then applying Lemma to
g 3
F () :=P(t+§) =+ pu+tgq,

where

b a? q_ab 2a3

R M

(Translation Formulas) and t; = z; — g,i = 1,2 we obtain

to € (t1,t2) such that

P - P F —F(t
(w2) = P(z1) _ F(t2) = F(t1) _ 362 4 p
To — T la —t
and since xzg = tg + g then
2 a2 a’ g
3t0+p=3(m0—§) +b—?=3x0—2axo+b.

Corollary. If a2 > 3b then

Pi)=2—az?+bx—c

increase on (—o0o,p1] and on [p, 00), decrease on (p1,p2) (numbers
P1 < p2 are solutions of equation (D)).

Proof. Since 3z% —2za+b < 0 for z € (p1,p2) then for any
P1 < x1 < z2 < ps by MV Theorem there is xo € (z1,2) such that

P(IEQ) = P(.’I)l)

=3x3—2aa:o+b<0
Iro — T

and, therefore, P (z) decrease on (p,ps).
Similarly, for z1 < x5 < p; (or pa < z1 < x3) there is zg € (x1,x2) such that
P (z2) — P (z1)
To — I

because 322 — 2za+b >0 for z € (=00, p1] U [p2, 00).
Hence, P (z) increase on (—oo, p;] and on [p2, 00).

=325 — 2azg+b> 0




892 Arkady M. Alt

8. Exploring convexity. First note that Q () := 23 + px + q is concave
down on (—0o0,0) and concave up on (0, 00).
Indeed, since linear function [ (z) = pz + ¢ simulteneously concave ap and
concave down on (—o00,00) and for any z;,zs > 0 holds

m{’+x§> T+ X2 3
2 - 2

( because 4 (:1:% —T1T9 + x%) — (z1 + m2)2 =3(x1 — x2)2 > 0) then

Q(z1) + Q (z2) Ttz
12 22Q<12 2)7

that is @ (z) is concave up on (0, c0).
If 21,29 < 0 then

(—$1)3;(—$2)3 > ((—901)-;‘(—5102)>3 = x?-;—x% < (3?142‘952)3

and, therefore,

Q(z1) +Q(z2) _ 0 <$1 +$2>
2 . 2 y
that is @ (z) is concave down on (—o0,0).

Let F(z)= 23— az?+ bz — c. Since

Q(t)zF(t—%) =t +putgq,

3b — a? 243 — 9ba + 27¢
IR - 27 i
immediatelly conclude that F (z) is is concave up on (5’ oo) and conca

down on (—oo, g) y

where p = (Translation Formulas) we can

8. Problems.

Problem 1.(1983 Bulgarian Winter Competition). Determine all
values of parameter p for which system of equations

Introduc

have real solutions.

Solution 1. Origins
Determine all values

have three real solut
By substitution u =

~equation

This equation have t

2
275

Solution 2. Let z =

= TYz -
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r+y+z=2
(0) rxy+yz+zz=1
DYZ =P

have real solutions.

Solution 1. Original problem have another equivalent setting.

Determine all values of parameter p for which equation
wW—2u3+u—p=0

have three real solutions.
By substitution u = v + 3 we get the same question to reduced cubic

equation
3 U 2
—=—+4+—=—-p=0.
viogtyn TP

This equation have three real roots iff

2 o R%
o7 = — RS T
7(27 p> +4( 3) <0

A~
| o
|
i~

~

[\V]
IA

27
<—4—<:> —2<2<:>
= o7 P=o7|1=27

0l
<p< o
2

2 2
yolution 2. Let z =a + g,y =b+ g,z =c+ g.Then

a+b+c:0,2xy:

cic

2 2 4 1
== — b — ] —=1 = ——
E <a+3)< +3> ab+bc+ca+3 < ab+bc+ca 3’

- (369 -3)-

2(zxy+yz+2x 4 8
(zy +y ) (t+y+2) =5z =

B
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R 5 feL gt |
3 9 27 27
Thus we obtain the system
a+b+c=0
(E) $ ab+bc+ca:—% ,
abc = q

2
where ¢ = p — — and which equivalent to the original system.

Note that system (E) solvable iff solvable the system

a+b+c=0
1
(E1) ab+bc+ca:—§
abe = |q|

Also note that at least one of three numbers a, b, ¢ must be non-negative,
because otherwise ab + bc + ca > 0. Let it be c.

Since a + b= —c and ab = ¢* — o= lg| then we should claim

1 4 2
2 2 2
4 >0 <= < — c¢c<
c <c 3) C 9 c 3

and
4
02—E|q|20<:>c324|q|<:>c2\3/4|q|.
Hence,
2>34|[<:> >
g~ K 97 =
>4||<:>||<2¢=> 2< 2<24:>
= =14 4= 797 =P 7 =97
4
D<p< —.
=H=2e

Solution 3. First we will find range of z if z +y + z = 2 and
zy+yz+zzx =1. Since z +y =2 — z and

Ty+yzt+zx=1 <= 2zy=1-2(2-2) < zy=(z-1)>
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T+y=2—-2z

then z,y should be solutions of the Vieta’s System { @~ 1)2 which
is solvable iff
4
2-2)°-4(2-1)%>0 < 2(32-4)<0 < 0<z< =

Thus range of p is [min P, max p} , where
z 4

p=2"-2242=2(z-1)>2.

Obvious that min p =0. Since for 0 < 2 <1 by AM-GM Inequality

z€[0,4/3]
1 1/224+2-22\% 4
z(z—1)2=§-2z(1—z)2§5<%) ==

with equality condition

1
2z2=1—2 << z:§.

4
Hence, max p = —.Since z (z — 1)? is increasing for 2 > 1 then

z€[0,1] 27
e 4 (4 . G
ax = — —_ — — ——

a3 \3 27

and, therefore,
iyt 27
Thus, range (p) = |0 -
e(p) =10, —|.

) g p o) 27
Problem 2.(Vietnamese Math.Olymp.1999,Category B, Problem
3). Consider real numbers a, b such that all roots of equation

axd —2? +br—1=0

are real and positive. Determine the smallest possible value of the following
expression:

5a2 — 3ab + 2

Pla, )= L
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Solution. Let x;,z9, 23 be the positive roots of equation
ax® — 22 +bx—1=0.

Then

1
1+ 2o+ x3 = —
a
b
12 + Tox3 + x3T1 = ;1—
T1X223 = —
a

and using AM-GM Inequality we obtain

1 1+ 29 + 3 : 1 9 il 3l
= < = = <— < a<—.
g LR ( 3 ) 274’ =y “=3/
Also we have
b o |
— =2T1T2 + Tox3 + 2371 < (m1+x2+m3) = — < 3ab< 1.
a 3 3a?

1
Substitution z = ~ in equation az® — 22 + bz — 1 =0 give us monic cubic
equation t3 — bt 4+t — ¢ = 0 which have three positive real roots
1
ti=—,1=1,2,3. Then for t1,ts,t3 we have

(]
t1+ta+t3=0>
tito + tots +t3t1 =1
ti1tots = a
Hence,

B (t 4t +t3)?
_:M2t1t2+t2t3+t3t1:1:>b2\/§.

3 3
Since b > /3 a<iand3ab<1 <— ab<1 then
—-— b _3\/§ f— —3’
1 8
b—a>V3——=—"_>0, 5% —3ab+2>5a% + 1
- 3v3 3V3 -

and

a2(b—a):a(ab—a2)§a<l—a2) =M.
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Hence,
1 3(5a% +1)

P(a,b) = (5a2—3ab+2)-a(ab_a2) > a(l—3a2)

1
Let h(a) = % We will prove that h(a) > h (%)

for0<a< —.
B33

We have
2 5+1
1 5a2 + 1 o7
= —_— > =4V3 <—
b > h(5o2) e s = /3
3v3 9

<— 5a2+124\/§a—12\/§a3 <= 12\/§a3+5a2—4\/§a+120.

1
Let ¢ := v/3a then c € (O, §J and

12v/3a® + 502 — 4v/3a +1=

(12¢* + 5¢® — 12¢ + 3) =

W —

5

:4c3+§c2—40+1:
1 2

25(36—1)(40 +3c—3)>0

4 1
because 3c — 1 < 0 and 4¢? + 3¢ — 3 < §+1—3<0force (0,§J .
1
Since P (a,b) > 12¢/3 = P <%, \/?:) then min P (a,b) = 12/3.
1
Substitution a = ﬁ and b = /3 in equation az® — 22+ bz — 1 =0 gives

V:r —224+V3z2-1=0 (x-\/§>3=0.

As a complement:
Problem 1.

a). Prove that €/9+\/%+ \3/9—\/8_:3;

b). Prove that v/54 + 30v/3 + V/54 — 30v/3 = 6:
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V45 +29v2 + /45 — 29V/2

c). Prove that = is integer number.

Problem 2. Calculate following sum if known that T1,X2,Z3 are roots of
cubic equation F (z) =0 :

! 1
S —  F S . 2, [
2 —.'L‘ll 2‘$2+2—x3’ (z) 331 3z ;
T P Ty By oo P = 23 2_y L
) _3x1+2+x§—3xz+2+x§—3x3+2 (x)=23+1z T+
1 1 1
C)- F(x):x3+x2_1.

a3 )
x%—2x1+1+x§—2x2+1 T3 — 223+ 1

Problem 3. For any cubic polynomial f(z) = 2% + az? + bz + ¢ there is

natural n such that Z f(z + k) > 0 have only one real solution i in R.
k=0

Hint:v Suffice to prove that for any quadratic trinomial 2 + pr + q there is
natural n such that E ( (z+k)?2+p (x+k)+ q) > 0 for any real z.

Problem 4. For rea] z +Y, 2 find the range (zyz) if
THy+z=52y+yz+ 22 =8.
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